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The Bauschinger effect in cyclically deformed 
niobium single crystals 
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The Bauschinger effect has been studied in niobium single crystals cyclically deformed to 
saturation at small strain amplitudes and at different temperatures. The parameters used to 
characterize the Bauschinger effect have been measured from the saturation hysteresis loops. 
The fatigued work-hardened crystals have been modelled as a composite consisting of a hard 
deformable phase (the regions of high dislocation density) embedded in a soft matrix (the 
regions of low dislocation density). The values of the mean internal stress in the matrix pre- 
dicted by this simple composite model are in good agreement with those measured experi- 
mentally, using a modification of the method originally proposed by Cottrell to separate the 
lattice friction and internal stress components in reverse deformation. 

1. In troduc t ion  
The Bauschinger effect is revealed by the fact that, 
after some deformation in a forward direction, the 
reverse flow stress is generally lower than the forward 
flow stress (permanent softening), and the stress- 
strain curve in the reverse direction shows a gradual 
yielding (transient softening). The most relevant 
studies of the Bauschinger effect have been devoted to 
investigating the permanent softening in two-phase 
materials consisting of a plastic matrix and a dilute 
dispersion of non-deformable hard inclusions [1, 2]. In 
this case, the permanent softening is due to the long- 
range internal stresses developed because of the com- 
patibility requirement between the deformation of the 
matrix and the inclusions. By contrast, the transient 
softening has a more general nature since it has been 
associated with the statistics of  the dislocation move- 
ment during reverse flow, that is, a dislocation moving 
forward sees a harder array of obstacles than it sees 
immediately after its motion is reversed. 

There have been few studies of the Bauschinger 
effect in single crystals containing only one phase, 
presumably because in these materials the Bauschinger 
effect is less significant than in the above-mentioned 
two-phase materials. In addition, it seems that there 
is not a generally accepted explanation for the 
Bauschinger effect in one-phase materials, in contrast 
with the large amount  of theoretical and experimental 
work carried out in dispersion-hardened alloys. 

In the present work the Bauschinger effect has been 
studied in niobium single crystals cyclically deformed 
to saturation at small strain amplitudes. The analysis 
of the results has been carried out following mainly 
the ideas of Pedersen et al. [3], developed to explain 
the Bauschinger effect in pure copper. These authors 
extended the theory for two-phase materials to the 
study of Stage II of the flow stress of pure copper 

in unidirectional deformation by using a simple com- 
posite model, in which the hard phase is deformable 
and it consists of regions of high dislocation density 
embedded in a soft matrix of low dislocation density. 

2. Experimental procedure 
The niobium single crystals were grown by the elec- 
tron-beam zone-melting technique. The total inter- 
stitial content of the crystals was about 50 p.p.m, by 
mass. They had a crystallographic orientation [1 4 7] 
which is near the centre of the unit stereographic 
triangle. Details of specimen preparation can be found 
elsewhere [4]. The ratio of the cylindrical gauge length 
to the specimen diameter was 3, in order to avoid 
buckling in compression. 

The specimens were deformed cyclically in tension- 
compression at constant total strain amplitude until 
saturation was reached, that is, until the shape of the 
hysteresis loop remained practically unchanged with 
further cyclic deformation. The tests were carried out 
at four different temperatures between 250 and 400 K, 
and at a constant total strain rate of 6.0 x 10 4 s e c  1. 

The shear plastic strain amplitudes at saturation 
ranged between 2.0 x 10 3 and 10 -2. 

The parameters used to characterize the Bauschinger 
effect were measured once saturation had been reached. 
Fig. 1 shows a typical hysteresis loop at saturation. 
Next to the loop, the stress strain curves after 
reversal have been plotted to illustrate more clearly 
the Bauschinger effect. The difference in stress 
between the forward tensile curve and the reverse 
compressive curve measured at the same cumulative 
strain is the permanent softening in compression, Arc, 
while the difference in stress between the now forward 
compressive curve and the reverse tensile curve is the 
permanent softening in tension, A r  t . The reason for 
measuring these two parameters instead of only one, 
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Figure 1 Typical shape of the 
hysteresis loop at saturation at 
room temperature, showing the 
parameters measured. 

as is usually done, is because the hysteresis loop is 
slightly asymmetrical; the peak stress in compression 
is higher than in tension. This asymmetry is typical of 
bcc  metals and is related to the asymmetry of the 
lattice friction stress of the screw dislocations in a b c c 
lattice. It changes in magnitude and sign when the 
crystallographic orientation of the specimen varies 
from [001] to [011] through the unit stereographic 
triangle [4, 5]. The influence of this asymmetry on the 
permanent softening was eliminated by taking as the 
permanent softening, At, the average value of A~c and 
A T  t . 

The gradual yielding of the reverse curve has been 
characterized by measuring the Bauschinger strains 7~ ) 
and 7(~ ) defined as the minimum reverse plastic shear 
strains in compression and tension, respectively, 
which are needed in order to reach the same slope of 
the hysteresis loop in the reverse direction, that is, the 
same plastic strain rate (see Fig. 1). If the hysteresis 
loops were completely symmetrical these two par- 
ameters would have the same value. However, ~(B c) and 
7~ ~ are slightly different because of a very small asym- 

metry in the shape of the tensile and compressive parts 
of the hysteresis loops, so that the average 7B, of 7~ 1 
and 7~/, has been taken as the Bauschinger strain. 

Throughout this paper, the symbols r and 7 refer to 
the shear stress and plastic shear strain, respectively, 
acting on the plane (1 i0)  which has been found to 
be the slip plane in tension [4]. The slip plane in 
compression was slightly different, but the Schmid 
factors for both slip planes had practically the same 
value. 

3. R e s u l t s  
The hardening which takes place during the cyclic 
deformation is illustrated in Fig. 2 for specimens 
deformed at room temperature at three different total 
strain amplitudes. The hardening of the specimen 
deformed at the smallest strain amplitude is negligible: 
this amplitude is inside the plateau region of the cyclic 
stress-strain curve of b c c crystals which is charac- 
terized by the absence of hardening [4-7]. The other 
two strain amplitudes correspond to Region 4 of 
the cyclic stress-strain curve where appreciable 
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Figure 3 Variation of the Baus- 
chinger strain with the amount of 
cyclic hardening for specimens 
deformed at different strain 
amplitudes and temperatures. 
T = (m) 250K, (O) 295K, (n) 
354K, (O) 400K. 

hardening occurs [4]. Both the Bauschinger strain and 
the permanent softening increased with the amount  of 
hardening, zF - ry, where ~v is the average shear 
peak stress and zv is the shear stress corresponding to 
the lower yield point in tension. A plot of 7B against 
r F --  ?y at saturation is shown in Fig. 3. It can be seen 
that a linear relationship between 7B and rv - ry 
represents well the experimental results. 

The permanent softening was measured only after 
having deformed the specimens to saturation so that 
some work-hardening had occurred, because during 
the first cycles the slope of the hysteresis loops (at the 
points of strain reversal) was zero and, therefore, there 
was no permanent softening. The same happened 
throughout all the complete fatigue life for specimens 
deformed at amplitudes corresponding to the plateau 
region of the cyclic stress-strain curve. 

One parameter commonly used to characterize 
the magnitude of the Bauschinger effect is the Bausch- 
inger effect parameter (BEP), defined by 

Az 
BEP - - -  (1) 

17 F - -  ' r y  

The values obtained for the BEP have been plotted in 
Fig. 4 as a function of zv - ZY at saturation. It can be 
noticed that the BEP is nearly constant and indepen- 
dent of temperature in the interval of strain ampli- 
tudes and temperatures studied. 

4. Discussion 
The dislocation substructure developed during the 
cyclic deformation of metals consists frequently of 

an inhomogeneous distribution where there are alter- 
nating regions of high and low dislocation density, 
respectively. The regions of high local dislocation 
density will be referred to as the "lumps" and they are 
characterized by a flow stress r2, which following 
Pedersen et  al. [3] can be taken as the superposition of 
the matrix friction stress, rv, and the usual forest 
stress, 4)Gb~ 1/2, that is, 

r2 = zy + 4)Gbe 1/2 (2) 

where ~ is the local dislocation density in the lumps, q5 
is a constant of about 1/3, G is the shear modulus and 
b is the magnitude of the Burgers vector. The term ry 
accounts not only for the lattice friction stress but also 
for any contribution from solid-solution hardening. 

From electron microscopy observations in b cc  
single crystals deformed at saturation at plastic shear 
strain amplitudes of  about 6 x 10 -3 ,  the local dislo- 
cation density in the lumps has been estimated to be in 
the range between 101° and 10 jl cm 2 in niobium [7], 
molybdenum [7-9] and ~ - F e  single crystals [9]. Using 
Equation 2 with ~o ~_ 4 x 101°cm-2, G = 39.6GPa, 
b = 2.86 x 10-1°m and taking "~y to be equal to the 
lower yield point of the virgin crystals (Vy = 25 MPa), 
one finally finds r2 ~- 100 MPa. 

The regions of low dislocation density, which from 
now on will be referred to as the "matrix",  will be 
characterized by a flow stress q which is assumed to be 
the result of the superposition of the matrix friction 
stress, Vy, and a contribution from hardening of the 
matrix due to the build-up of forest dislocations 
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Figure 4 Variation of the Bauschinger 
effect parameter with the shear plastic 
strain amplitude at saturation. T = (m) 
250K, (©) 295K, (n) 354K, (e)  400K. 
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during cyclic deformation, rf, that is 

rl = rv 4- rr (3) 

In the saturation stage, the fatigue-work-hardened 
crystals will be modelled as a composite consisting of 
a volume f rac t ionfof  hard but deformable lumps with 
a flow stress equal to z2 and a volume fraction (1 - f )  
of soft matrix with a flow stress equal to ~1. If we 
assume that both phases deform in parallel, then the 
flow stress of the lumps will be reached when 7 = 
(r2/G) - 2.5 x 10 3. Therefore, for plastic shear 
strain amplitudes in the region of the cyclic stress- 
strain curve (that is, with 7 ~> 3.0 x 10 3 forniobium 
at room temperature [4]) one can assume that the 
lumps deform plastically. 

An important consequence of the composite model 
is the development of long-range internal stresses in 
the crystals in order to maintain the compatibility 
between the deformation of the hard and soft phases. 
These long-range internal stresses aid the applied 
stress in the lumps and oppose it in the matrix. The 
mean internal stress in the matrix, <r>M and in the 
lumps, <r>L, are related by the condition that the 
mean internal stress in the composite must vanish, 
that is 

(1 - f)<'C>M 4- f (z>L = 0 (4) 

It can be shown [3] that (r)M can be written as 

<"C > M = fGC? T (5) 

where F is the Eshelby accommodation factor which 
varies between 0 and 1 depending on the shape of the 
lumps and ?x is the effective transformation strain 
given by 

7 T = 72 - 71 (6) 

and it measures the incompatibility in simple plastic 
shear between the strain in the lumps (72) and the 
strain in the matrix (71). If it is assumed that there is 
no appreciable strain-hardening in the lumps then 
7 T = 2.5 x 10 3. The volume fraction, f,  of  lumps 
measured at a saturation strain 7p = 6 x 10 -3 is 
about 0.15 [7, 8] and if F = 0.6 Equation 5 gives 
<17>M ~-- 9 MPa. At the point of flow of the lumps, the 
mean stress in the lumps is given by 

<~>L = ~2- rF (7) 

By using this expression in Equation 4 one obtains the 
alternative equation for the mean stress in the matrix: 

f ( ~ 2  - ~F) 
<T>M -- (8)  

1 - f  

Thus, at 7 -~ 6.0 x 10 3, the saturation shear stress 
amplitude is about 40MPa, and using f ~-0.15 
together with r2 ~-100MPa, one obtains from 
Equation 8 <'C>M : 10MPa, in agreement with the 
value calculated above. 

The permanent and transient softenings suggested 
by the composite model [3] are illustrated in Fig. 5 in 
the case where both phases, the matrix and the lumps, 
deform plastically. After the strain has been reversed 
at Point A, the matrix begins to deform plastically 
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Figure 5 Shape of the hysteresis loop predicted by the composite 
model. 

when the stress reaches Point B. In the stage BC the 
matrix deforms plastically while the lumps deform 
only elastically and the slope of the straight line is equal 
to GfF. In the stage CD both phases deform plas- 
tically, and, in the absence of work-hardening, the line 
CD would be horizontal, so that the permanent 
softening would be zero. However, if there is some 
small work-hardening, then the straight line would 
have a slope different from zero and there would exist 
a small permanent softening. 

With the values o f f  and F used here, the slope of the 
stage BC is GfF = 3.6GPa. This slope has been 
drawn in the hysteresis curve of Fig. 1 and it shows 
that the model can account fairly well for the shape of 
the hysteresis loop. It is not surprising that the curve 
is rounded in the real case, because not all the lumps 
have the same flow stress and some hardening of both 
lumps and matrix must also be allowed for. 

It should be interesting to compare the value of 
<r)M calculated from the composite model with values 
of the long-range back-stress obtained experimentally 
using the method originated by Cottrell [10] and 
applied more recently by Kuhlmann-Wilsdorf [11] to 
copper crystals. Some modifications of the method 
will be required here, as explained in what follows. 
With reference to Figs 1 and 5, the saturation shear 
stress in the forward direction, rF, can be written as 

WF = ry + rf + I(r>MI (9) 

since now <r)M opposes the deformation in the for- 
ward direction. Plastic deformation in the reverse 
direction begins at Point B (Fig. 5), when the stress 
reaches a value equal to T R which is given by 

T R = 17y "J- % ' f -  I<%'>M] (10 )  

since now the mean stress in the matrix helps the defor- 
mation in the reverse direction. Here it is assumed that 
rris the same in the forward and reverse directions; by 
contrast, the lattice friction stress in the reverse direc- 
tion, r~, is considered to be different from the lattice 
friction stress in the forward direction. The reason is 
that in b c c crystals the lattice friction stress is strongly 
dependent on the strain rate, and the plastic strain rate 
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Figure 6 Variation of  the mean 
internal stress in the matrix with 
the number  of  cycles for different 
strain amplitudes. 

at the peak stress in the forward direction is larger 
than at the point where the crystal begins to yield in 
the reverse direction. Combination of  Equations 9 and 
10 provides 

and 

where 

and 

rr = ~(AZF + a~ . )  (12) 

A'cv =- zv - Zy (13) 

A% = ZR -- Z~ (14) 

Therefore, if zy and r~ are taken to be equal to the 
values of ZF and re,  respectively, of the first cycle of 
the virgin crystal, then by measuring rF and % at 
saturation one can obtain AVF and Ar R, and finally 
both (z)M and rr can be calculated from Equations 11 
and 12. The build-up of <Z)M with the number 
of cycles is presented in Fig. 6 for the specimens 
deformed at those strain amplitudes for which the 
hardening curves have been shown in Fig. 2. 

The back-stress at saturation for the specimen 
deformed at eT = 3.7 X 10 3 (giving 7p = 6 x 10 .3  

at saturation) is approximately 10 MPa as calculated 
from the composite model. 

The Bauschinger strain is related to the mean stress 
in the matrix by a very simple relationship; from 
Fig. 5 one has 

~v - zR 2t(~)M I ,//~Y- -- Z,~'~, 
(15) 

7 B -  FfG - FfG \ FfG J 

-z ,~  is neglected compared with If the term vy 
2(~)M, then 

21<V)MI 
(16) 

7~ - FfG 

and if Equation 5 is used in this last expression, 
?B ~- 27 x. Therefore, the Bauschinger strain is 
approximately equal to twice the transformation 
strain. The variation of TB with I(Z)M] has been plotted 

in Fig. 7 where a straight line represents satisfactorily 
the dependence of 7n on I<OMI. The slope of this 
straight line is 2/FfG = 0.84 x 10-3MPa -~ and it 
can be seen that by using G = 39.6 GPa there is good 
quantitative agreement if F -~ 0.6 a n d f  _~ 0.12, con- 
sistent with the values used before. From simple 
geometry and from Fig. 5 it follows that 

Az -~ 207p (17) 

where 0 is the hardening rate of the hysteresis loop in 
the stage CD where both phases deform plastically. 
Now the Bauschinger effect parameter, (Equation 1) 
can be written as 

BEP - 207p (18) 
"EF - -  ~ 'Y 

Furthermore, within the s t ra in  amplitude interval 
used in the experiments (inside the linear Region 4 of 
the cyclic stress-strain curve [4]), ~v - -  " C y  is pro- 
portional to Ye and therefore BEP --- constant, in 
agreement with the plot of Fig. 4. The experimental 
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Figure 7 Plot of  the Bauschinger strain against the mean internal 
stress for specimens deformed at different strain amplitudes and 
temperatures. T = ( I )  250K, (O) 295K, (1:3) 354K, (O) 400K. 
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results of Fig. 3, where 7B is roughly proportional to 
rF - ry, are justified by the fact that at high strain 
amplitudes yp is nearly equal to 7B- 
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